Thermal Decomposition Kinetics of Triethylene Glycol Dinitrate

CHEN, Pei(陈沛) ZHAO, Feng-Qi*(赵凤起) LUO, Yang(罗阳) HU, Rong-Zu(胡荣祖) LI, Shang-Wen(李上文) GAO, Yin(高茵)

Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China

The thermal behavior and kinetic parameters of the decomposition reaction of triethylene glycol dinitrate (TEGDN) in a temperature-programmed mode at different pressures (0.1, 2, 4 and 6 MPa) have been investigated by means of DSC and TG-DTG. The results show that the properties of the thermal decomposition of TEGDN are affected by the change of pressure, and the kinetic model function, the apparent activation energy E_a and pre-exponential factor A of this reaction are $2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$, 106.54 kJ•mol⁻¹ and $10^{9.17}$ s⁻¹ at 0.1 MPa, and 120.82 kJ•mol⁻¹ and $10^{10.56}$ s⁻¹ at 2 MPa, respectively. The critical temperature of thermal explosion of TEGDN obtained by the values T_{eo} and T_{po} of the onset temperature T_e and the peak temperature T_P when the heating rate tends to zero are 191.05, 209.86 °C at 0.1 MPa, 207.59 and 221.65 °C at 2 MPa, respectively.

Keywords triethylene glycol dinitrate, DSC, non-isothermal kinetics, TG-DTG, thermal decomposition

Introduction

Triethylene glycol dinitrate (TEGDN) is a novel energetic material containing two groups of -NO₂, which can be used as an energetic plasticizer ingredient in propellants because of its excellent proformance.¹ It exhibits lower impact sensitivity, better thermostability, weaker poisonousness and volatility, and stronger effectiveness of plasticizing cellulose nitrate than nitroglycerine (NG). As a new plasticizer TEGDN has good application prospects in the near future. Thermal behavior is one of the most important aspect of TEGDN in practical application. However, its thermal behavior and kinetic parameters of thermal decomposition have never been reported before. The aim of this work is to study its thermal behavior and kinetic parameters of the thermal decomposition reaction at different pressures (0.1, 2,4 and 6 MPa) by DSC and TG-DTG. This is quite useful in the evaluation of its thermal stability under non-isothermal condition and in the study of its thermal changes at high temperature and different pressures.

Experimental

Material

TEGDN was prepared by Xi'an Modern Chemistry Research Institute, and its purity is more than 99.5%. The sample was kept in a vacuum desiccator before use. Its structure was characterized by IR and MS. IR (KBr) v: 1631, 1282, 1131, 1029 cm⁻¹; MS (70 eV) m/z: 46 (NO₂⁺), 73(CH₂OCH₂CHO).

Equipment and conditions

The thermal decomposition experiment was carried out by a model DSC190S differential scanning calorimeter made in American TA Company. The conditions of DSC were as follows: sample mass, less than 2.00 mg; heating rate, 5, 10, 20, 30 and 40 °C•min⁻¹; atmosphere, static nitrogen; reference sample, aluminum oxide. The TG/DTG curve was obtained using a model TGA2950 thermobalance. The conditions of TG were as follows: sample mass, less than 1.00 mg; heating rate, 10 °C• min⁻¹; atmosphere, flowing N₂ gas, 50 mL•min⁻¹.

Results and discussion

Properties of the thermal decomposition of TEGDN at different pressures

The typical TG-DTG and DSC curves for the thermal decomposition of TEGDN at different pressures (0.1, 2, 4 and 6 MPa) are shown in Figures 1 and 2. From Figure 1 it can be seen that, there is only one mass loss stage between 80 and 200 °C. After 200 °C the percent of the residue mass is close to zero (0.267%) and there is no change with temperature rising, showing that the decomposition of TEGDN is more completed. In Figure 2, in the scope of pressure 0.1—6 MPa, all the four DSC curves of TEGDN consist of one exothermic decomposition peak between 150 and 250 °C. But the temperature of the peak and the enthalpy of the exothermic decomposition reaction (ΔH_{dec}) are related to the pressure. At atmosphere pressure, the peak temperature T_p and the onset temperature T_e are 215.3

^{*} E-mail: npecc@21cn.com

Received March 9, 2004; revised and accepted June 22, 2004

Project supported by the Science and Technology Foundation of the National Defense Key Laboratory of Propellant and Explosive Combustion of China (No. 51455030101ZS3505).

Figure 1 TG and DTG curves for TEGDN at a heating rate of $10 \text{ }^{\circ}\text{C} \cdot \min^{-1}$.

Figure 2 DSC curves for TEGDN at a heating rate of 10 $^{\circ}$ C• min⁻¹.

and 190.1 °C, respectively, and the enthalpy of the exothermic decomposition (ΔH_{dec}) is 1056 J•g⁻¹. When the pressure rises from 0.1 to 2 MPa, T_P shifts 3.5 °C upwards and ΔH_{dec} increases 1689 J•g⁻¹ sharply. Once the pressure increases again, T_P has little change and remains within the scope of 219—221 °C, and the values of ΔH_{dec} at 2, 4 and 6 MPa are close with each other basically.

Analysis of kinetic data

In order to obtain the kinetic parameters at 0.1 and 2 MPa [apparent activation energy (E_a) and pre-exponential constant (A)] of the exothermic decomposition reaction for TEGDN, a multiple heating method² (Kissinger's method) and Ozawa's method³ were employed. From Table 1, it can been seen that, at 0.1 MPa, E_o is very close to E_k , they are 112.69 and 113.98 kJ•mol⁻¹, respectively. At 2 MPa, the values of both are 122.99 and 120.54 kJ•mol⁻¹, respectively.

The integral Eqs. $(1)^4$ and $(2)^5$ differential Eq. $(3)^6$ are cited to obtain the values of E_a , A and the most probable kinetic model function $[f(\alpha)]$ from a single non-isothermal DSC curve for TEGDN at 0.1 and 2 MPa.

$$lg[G(\alpha)] = lg\left(\frac{AE_a}{\beta R}\right) - 2.315 - 0.4567 \frac{E_a}{RT} \qquad (1)$$

Table 1Calculated values of the kinetic parameters for the exothermic decomposition reaction of TEGDN determined from the DSCcurves at various heating rates a

β/ (°C•min ⁻¹)	Te∕°C	$E_{\rm o}/$ (kJ•mol ⁻¹)	r _o	$T_{\rm p}/{\rm °C}$	$E_{\rm k}/$ (kJ•mol ⁻¹)	$\log A_k$ (A_k in s ⁻¹)	r _k	$E_{\rm o}$ / (kI•mol ⁻¹)	r _o	$T_{\rm eo}/^{\circ}{ m C}$	$T_{\rm b}{}^b/{}^\circ\!{\rm C}$	$T_{\rm po}/{}^{\circ}{\rm C}$	$T_{\rm b}{}^c/{}^\circ\!{ m C}$
0.1 MPa		(10 1101)			(10 1101)	(1, 11, 5)		(ite inor)					
10.0	189.78	109.09	0.9887	215.34	113.98	10.17	0.9889	116.29	0.9903	174.28	191.05	192.84	209.86
20.0	199.91			228.38									
30.0	204.67			231.96									
40.0	212.99			239.55									
Mean: E_0 =	=(109.09	0+116.29)/	2=112.6	9 kJ•mol⁻	1								
2 MPa													
5.0	190.15	123.44	0.9969	210.87	120.54	10.74	0.9985	122.54	0.9987	191.82	207.59	204.76	221.65
10.0	199.64			220.01									
20.0	207.77			231.38									
30.0	216.21			238.87									
40.0	220.65			244.18									
Mean: E_0 =	=(123.44	+122.54)/	2=122.9	9 kJ•mol	-1								

^{*a*} β , heating rate; T_e , onset temperature in the DSC curve; T_p , maximum peak temperature; T_{e0} , the value of the onset temperature (T_e) corresponding to $\beta \rightarrow 0$ obtained by Eq. (4); T_b , critical temperature of thermal explosion; *E*, apparent activation energy; *A*, pre-exponential constant; *r*, linear correlation coefficient; subscript *k* for data obtained by Kissinger's method; subscript o for data obtained by Ozawa's method. ^{*b*} The value of T_b obtained by the value of T_{e0} in Eq. (5). ^{*c*} The value of T_b obtained by the value of T_{p0} in Eq. (5).

$$\ln \frac{G(\alpha)}{T^2(1-\frac{2RT}{E_a})} = \ln \frac{AR}{\beta E_a} - \frac{E_a}{RT}$$
(2)

$$\ln \frac{\mathrm{d}H}{\mathrm{d}t} = \ln \left\{ AH_0 f(\alpha) \left[1 + \frac{E_a}{RT} \left(1 - \frac{T_0}{T} \right) \right] \right\} - \frac{E_a}{RT} \qquad (3)$$

where $f(\alpha)$ and $G(\alpha)$ are the differential and integral model function, respectively, T_0 the initial point at which DSC curve deviates from the baseline, *R* the gas constant, α the conversion degree ($\alpha = H_t/H_0$), H_0 the total heat effect corresponding to the global area under the DSC curve), H_t the reaction heat at a certain time (corresponding to the partial area under the DSC curve), *T* the temperature at time *t*, $\frac{d\alpha}{dT} = \frac{1}{H_0\beta} \frac{dH}{dt} = \frac{1}{\beta} \frac{d\alpha}{dt}$.

Forty-one types of kinetic model function⁷ and DSC data with different heating rate of 2, 5, 10 and 20 °C• min⁻¹ at 0.1 and 2 MPa such as DSC data listed in Tables 2 and 3, respectively, were put into Eqs. (1), (2) and (3) for calculation, respectively. The values of E_a , A, correlation coefficient r, standard mean square deviation Q and believable factor d [where $d=(1-\alpha)Q$] were obtained by the linear least-squares and iterative methods.⁸ The results are listed in Table 4. The probable kinetic model function of three methods selected by the better values of r, Q and d and satisfying ordinary range of the thermal decomposition kinetic parameters for energetic materials (E=80-250 kJ•mol⁻¹ and log A=

7-30) are $G(\alpha) = [-\ln(1-\alpha)]^{\frac{1}{2}}$ and $f(\alpha) = 2(1-\alpha)^{\frac{1}{2}}$

 $\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$, respectively, which indicates that the reaction mechanism of the exothermic decomposition processes of TEGDN at 0.1 and 2 MPa is classified as nucleation and growth, and the mechanism function is the Avrami-Erofeev equation with n=1/2.

Under the condition of 0.1 MPa, the values (T_{e0} and T_{p0}) of the onset temperature T_e and the peak temperature T_p corresponding to $\beta \rightarrow 0$ obtained by Eq. (4) taken from Ref. 8 using the data of T_e , T_p and β in Table 1 are 174.28 and 192.84 °C, respectively. At 2 MPa, T_{eo} and T_{po} are 191.82 and 204.76 °C, respectively.

$$T_{(e \text{ or } p)_i} = T_{e0 \text{ or } p0} + b\beta_i + c\beta_i^2, \quad i=1-4$$
 (4)

where b and c are coefficients.

At 0.1 MPa, the values of the critical temperature of thermal explosion (T_b) obtained from Eq. (5) taken from Ref. 8 using the above-mentioned values of T_{e0} and T_{p0} , and the value of E_o in Table 1 are 190.68 °C and 209.49 °C, respectively. At 2 MPa, they are 224.25 °C and 239.48 °C, respectively.

Table 2 Basic data of the exothermic decomposition process ofTEGDN determined by DSC^a at 0.1 MPa a

	•			
Data point	T_i/K	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/(\mathrm{mJ} \cdot \mathrm{s}^{-1})$	$(\mathrm{d}\alpha/\mathrm{d}T)_i$ $\times 10^3/\mathrm{K}^{-1}$
1	433.15	0.0002	0.066	0.16
2	435.15	0.0005	0.097	0.24
3	437.15	0.0009	0.127	0.31
4	439.15	0.0014	0.174	0.43
5	441.15	0.0023	0.312	0.78
6	443.15	0.0037	0.353	0.87
7	445.15	0.0050	0.348	0.86
8	447.15	0.0063	0.382	0.94
9	449.15	0.0079	0.500	1.23
10	451.15	0.0102	0.687	1.70
11	453.15	0.0136	0.954	2.36
12	455.15	0.0182	1.182	2.92
13	457.15	0.0242	1.498	3.70
14	459.15	0.0316	1.765	4.36
15	461.15	0.0400	2.036	5.03
16	463.15	0.0494	2.323	5.74
17	465.15	0.0606	2.900	7.17
18	467.15	0.0749	3.654	9.03
19	469.15	0.0932	4.554	11.26
20	471.15	0.1160	5.605	13.85
21	473.15	0.1442	6.776	16.75
22	475.15	0.1783	8.039	19.87
23	477.15	0.2185	9.361	23.14
24	479.15	0.2644	10.539	26.05
25	481.15	0.3155	11.650	28.80
26	483.15	0.3713	12.769	31.56
27	485.15	0.4333	13.716	33.91
28	487.15	0.4996	14.306	35.36
29	489.15	0.5691	14.453	35.73
30	491.15	0.6389	14.127	34.92
31	493.15	0.7072	13.287	32.84
32	495.15	0.7717	12.066	29.83
33	497.15	0.8288	10.586	26.17
34	499.15	0.8785	8.946	22.11
35	501.15	0.9190	7.163	17.71
36	503.15	0.9498	5.336	13.19
37	505.15	0.9714	3.736	9.23
38	507.15	0.9851	2.502	6.18
39	509.15	0.9931	1.602	3.96
40	511.15	0.9972	1.051	2.6.0
41	513.15	0.9991	0.766	1.89
42	515.15	0.9998	0.599	1.48

^{*a*} T_0 =433.2 K; H_0 =2427.24 mJ; β =0.1667 K•s⁻¹.

Thermal decomposition Kinetics

Table 3 Basic data of the exothermic decomposition process ofTEGDN determined by DSC^a at 2 MPa a

Data point	T_i/K	α_i	$(\mathrm{d}H/\mathrm{d}t)_i/$	$(d\alpha/dT)_i$
1	•		(mJ•s ⁻¹)	$\times 10^{3}/{\rm K}^{-1}$
1	456.15	0.00004	0.492	0.2337
2	458.15	0.00005	0.663	0.3150
3	460.15	0.0002	0.899	0.4268
4	462.15	0.0004	1.156	0.5488
5	464.15	0.0008	1.477	0.7012
6	466.15	0.0014	1.862	0.8842
7	468.15	0.0024	2.354	1.1179
8	470.15	0.0037	2.975	1.4126
9	472.15	0.0055	3.702	1.7581
10	474.15	0.0080	4.558	2.1646
11	476.15	0.0112	5.607	2.6626
12	478.15	0.0152	6.902	3.2774
13	480.15	0.0204	8.511	4.0417
14	482.15	0.0271	10.518	4.9949
15	484.15	0.0353	13.000	6.1687
16	486.15	0.0456	16.037	7.6159
17	488.15	0.0581	19.765	9.3862
18	490.15	0.0732	24.302	11.5407
19	492.15	0.0913	29.789	14.1463
20	494.15	0.1125	36.297	17.2368
21	496.15	0.1370	43.898	20.8465
22	498.15	0.1652	52.623	24.9898
23	500.15	0.1969	62.338	29.6037
24	502.15	0.2324	72.910	34.6240
25	504.15	0.2720	83.995	39.8882
26	506.15	0.3168	95.358	45.2846
27	508.15	0.3680	106.23	50.4472
28	510.15	0.4297	115.45	54.8272
29	512.15	0.5122	119.81	56.9004
30	514.15	0.6661	103.64	49.2175
31	516.15	0.8812	42.565	20.2134
32	518.15	0.9305	26.519	12.5934
33	520.15	0.9544	18.971	9.0092
34	522.15	0.9689	14.537	6.9035
35	524.15	0.9784	11.828	5.6169
36	526.15	0.985	10.052	4.7734
37	528.15	0.9898	8.765	4.1626
38	530.15	0.9933	7.811	3.7094
39	532.15	0.9958	7.101	3.3720
40	534.15	0.9976	6.563	3.1169
41	536.15	0.9988	6.163	2.9268
42	538.15	0.9995	5.885	2.7947
43	540.15	0.9999	5.692	2.7033
		06 T 0	· · · · · · · · ·	1

 $a_{T_0}=423.2 \text{ K}; H_0=3415.06 \text{ mJ}; \beta = 0.3333 \text{ K} \cdot \text{s}^{-1}$

Chin. J. Chem., 2004, Vol. 22, No. 10 1081

$$T_{\rm b} = \frac{E_{\rm o} - \sqrt{E_{\rm o}^2 - 4E_{\rm o}RT_{\rm e0 \, or \, p0}}}{2R} \tag{5}$$

where *R* is the gas constant (8.314 J•mol⁻¹•K⁻¹) and E_0 is the value of *E* obtained by Ozawa's method.

At 0.1 and 2 MPa, substituting $f(\alpha)$ with $2(1-\alpha)$ • $[-\ln(1-\alpha)]^{\frac{1}{2}}$, E_a with 106.54 and 120.82 kJ•mol⁻¹, β with 0.1667 K•s⁻¹ and A with 10^{9.17} and 10^{10.56} s⁻¹ in Eq. (6)

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = \frac{A}{\beta} f(\alpha) \exp(-E_{\mathrm{a}}/RT)$$
(6)

we can establish the kinetic equation of the exothermic decomposition process of TEGDN as follows at 0.1 MPa,

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 10^{10.25} (1-\alpha) [-\ln(1-\alpha)]^{\frac{1}{2}} \mathrm{e}^{-1.281 \times 10^{4}/T}$$

at 2 MPa,

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 10^{11.64} (1-\alpha) [-\ln(1-\alpha)]^{\frac{1}{2}} \mathrm{e}^{-1.453 \times 10^{4}/7}$$

Conclusions

The kinetic equations of the exothermic decomposition processes of TEGDN at 0.1 and 2 MPa can be expressed respectively as

at 0.1 MPa,

$$\frac{d\alpha}{dT} = 10^{10.25} (1 - \alpha) [-\ln(1 - \alpha)]^{\frac{1}{2}} e^{-1.281 \times 10^{4}/T}$$

at 2 MPa,

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 10^{11.64} (1-\alpha) [-\ln(1-\alpha)]^{\frac{1}{2}} \mathrm{e}^{-1.453 \times 10^{4}/T}$$

The apparent activation energy and pre-exponential constant of the exothermic decomposition reaction of TEGDN are $106.54 \text{ kJ} \cdot \text{mol}^{-1}$ and $10^{9.17} \text{ s}^{-1}$ at 0.1 MPa, and $120.82 \text{ kJ} \cdot \text{mol}^{-1}$ and $10^{10.56} \text{ s}^{-1}$ at 2 MPa, respectively. The corresponding critical temperatures of thermal explosion are 191.05 and 209.86 °C at 0.1 MPa, 207.59 and 221.65 °C at 2 MPa, respectively.

$\frac{\beta/\mathbb{C}}{6(\alpha)} \qquad f(\alpha) \qquad \frac{Eq. (1)}{E_{a'}} \qquad \frac{Eq. (2)}{(kJ^{+}mol^{-1})} \qquad \frac{Eq. (3)}{(kJ^{+}mol^{-1})} \qquad \frac{Eq. (3)}{(kJ$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.1 MPa 10 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 103.52 ^a 9.02 ^a 101.01 ^b 8.70 ^b 117.94 ^c 10.00 ^c 20 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 117.95 ^d 10.51 ^d 115.88 ^e 10.27 ^e 111.72 ^f 9.49 ^f 30 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 118.90 ^g 10.64 ^g 116.71 ^h 10.39 ^h 72.41 ⁱ 5.45 ⁱ 40 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 114.10 ^j 10.12 ^j 111.61 ^k 9.83 ^k 88.69 ^j 6.99 ^l Mean $E_a = 106.54 \text{ kJ} \cdot \text{mol}^{-1}, \log A = 9.17$ 2 MPa 10 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 116.55 ^m 10.34 ^m 114.57 ⁿ 10.11 ⁿ 111.72 ^o 9.49 ^o 20 $[-\ln(1-\alpha)]^{\frac{1}{2}}$ $2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$ 118.12 ^p 10.50 ^o 116.17 ^q 10.28 ^q 117.38 ^r 9.65 ^r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$40 \ \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 114.10^{j} \ 10.12^{j} \ 111.61^{k} \ 9.83^{k} \ 88.69^{l} \ 6.99^{l} \ Mean \ E_{a} = 106.54 \ \text{kJ} \cdot \text{mol}^{-1}, \ \log A = 9.17 \ 2 \ \text{MPa} \ 10 \ \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 116.55^{m} \ 10.34^{m} \ 114.57^{n} \ 10.11^{n} \ 111.72^{o} \ 9.49^{o} \ 20 \ \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \ 118.12^{p} \ 10.50^{p} \ 116.17^{q} \ 10.28^{q} \ 117.38^{r} \ 9.65^{r} \ 9.65^{r} \ 10.57^{r} \ 10.50^{r} \ 116.17^{q} \ 10.28^{q} \ 117.38^{r} \ 9.65^{r} \ 10.57^{r} \ 10.57^{r} \ 10.50^{r} \ 116.17^{q} \ 10.28^{q} \ 117.38^{r} \ 9.65^{r} \ 10.57^{r} \ 1$
Mean $E_a = 106.54 \text{ kJ} \cdot \text{mol}^{-1}, \log A = 9.17$ 2 MPa 10 $\left[-\ln(1-\alpha) \right]^{\frac{1}{2}}$ $2(1-\alpha) \left[-\ln(1-\alpha) \right]^{\frac{1}{2}}$ 116.55^m 10.34^m 114.57^n 10.11^n 111.72^o 9.49^o 20 $\left[-\ln(1-\alpha) \right]^{\frac{1}{2}}$ $2(1-\alpha) \left[-\ln(1-\alpha) \right]^{\frac{1}{2}}$ 118.12^p 10.50^p 116.17^q 10.28^q 117.38^r 9.65^r
2 MPa 10 $\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ $2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ 116.55 ^m 10.34 ^m 114.57 ⁿ 10.11 ⁿ 111.72 ^o 9.49 ^o 20 $\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ $2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ 118.12 ^p 10.50 ^p 116.17 ^q 10.28 ^q 117.38 ^r 9.65 ^r
$10 \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \qquad 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \qquad 116.55^{m} \qquad 10.34^{m} \qquad 114.57^{n} \qquad 10.11^{n} \qquad 111.72^{o} \qquad 9.49^{o}$ $20 \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \qquad 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} \qquad 118.12^{p} \qquad 10.50^{p} \qquad 116.17^{q} \qquad 10.28^{q} \qquad 117.38^{r} \qquad 9.65^{r}$
$20 \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} 118.12^{p} 10.50^{p} 116.17^{q} 10.28^{q} 117.38^{r} 9.65^{r}\right]$
$30 \left[-\ln(1-\alpha)\right]^{\frac{1}{2}} 2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}} 134.91^{s} 12.23^{s} 133.62^{t} 12.10^{t} 118.58^{u} 9.97^{u}\right]$
40 $\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ $2(1-\alpha)\left[-\ln(1-\alpha)\right]^{\frac{1}{2}}$ 125.43 ^v 11.20 ^v 123.48 ^w 10.99 ^w 118.64 ^x 10.19 ^x
Mean $E_a = 120.82 \text{ kJ} \cdot \text{mol}^{-1}, \log A = 10.56$
a r = 0.9942, Q = 0.1874, d = 0.0011; $b r = 0.9931, Q = 1.0185, d = 0.0070;$ $c r = 0.9899, Q = 2.0466; d = 0.0207;$
${}^{d}r=0.9820, Q=0.5705, d=0.0103;$ ${}^{e}r=0.9792, Q=3.0635, d=0.0638;$ ${}^{f}r=0.9635, Q=4.0622, d=0.1484;$
s r=0.9668, Q=0.6169, d=0.0205; " $r=0.9620, Q=3.2941, d=0.1253;$ " $r=0.9456, Q=1.860, d=0.1012;$
r = 0.98/8, Q = 0.2995, d = 0.003/; r = 0.9858, Q = 1.6105, d = 0.0230; r = 0.9575, Q = 3.1587, d = 0.1342; r = 0.9002, Q = 0.0122, d = 0.00001; r = 0.9001, Q = 0.0716, d = 0.00006; r = 0.9572, Q = 1.0745, d = 0.0154;
r = 0.9992, Q = 0.0155, a = 0.00001; r = 0.9991, Q = 0.0716, a = 0.00000; r = 0.9857, Q = 1.0745, a = 0.0154; r = 0.9992, Q = 0.0085, d = 0.000006; q r = 0.9991, Q = 0.0716, d = 0.00007; r = 0.9857, Q = 1.0745, d = 0.0154;

 $^{t}r=0.9652, Q=8.2448, d=0.2869;$

 w r=0.9796, Q=2.7679, d=0.0563;

1082 Chin. J. Chem., 2004, Vol. 22, No. 10

References

1 Gerard, D. J. Propul. Power 1995, 11, 872.

s r=0.9692, Q=1.5432, d=0.0476;

v r = 0.9823, Q = 0.5169, d = 0.0092;

- 2 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
- 3 Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38,1881.
- 4 Satava, V.; Sestak, J. J. Therm. Anal. 1975, 8, 477.
- 5 Coats, A. W.; Redfern, J. P. Nature 1964, 201(4914), 68.
- 6 Hu, R.-Z.; Yang, Z.-Q.; Ling, Y.-J. Thermochim. Acta 1988, 123, 135.

 u r=0.9686, Q=6.2406, d=0.1960;

x r = 0.9463, Q = 7.2418, d = 0.3542.

- 7 Hu, R.-Z.; Shi, Q.-Z. In Thermal Analysis Kinetics, Science Press, Beijing, 2001, p. 127 (in Chinese).
- 8 Zhang, T.-L.; Hu, R.-Z.; Xie, Y.; Li, F.-P. Thermochim. Acta **1994**, *244*, 171.

(E0403092 ZHAO, X. J.)